A type-2 neuro-fuzzy system with a novel learning method for Parkinson’s disease diagnosis
نویسندگان
چکیده
In this paper, an interpretable classifier using interval type-2 fuzzy neural network for detecting patients suffering from Parkinson's Disease (PD) based on analyzing the gait cycle is presented. The proposed method utilizes clinical features extracted vertical Ground Reaction Force (vGRF), measured by 16 wearable sensors placed in soles of subjects' shoes and learns rules. Therefore, experts can verify decision made investigating firing strength Moreover, utilize rules patient diagnosing or adjust them their knowledge. To improve robustness against uncertainty noisy sensor measurements, Interval Type-2 Fuzzy Logic applied. learn rules, two paradigms are proposed: 1- A batch learning approach clustering available samples applied to extract initial 2- complementary online rule base encountering new labeled samples. performance evaluated classifying healthy subjects different conditions including presence noise observing instances. model compared some previous supervised unsupervised machine approaches. final Accuracy, Precision, Recall, F1 Score 88.74%, 89.41%, 95.10%, 92.16%. Finally, sets each feature reported.
منابع مشابه
A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولA Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولDiagnosis of Coronary Artery Disease using Neuro-fuzzy-based Method
Background & Aim: Coronary artery disease is one of the most common diseases in different societies. Coronary angiography is established as one of the best methods for diagnosis of this disease. Angiography is an invasive and costly method. Furthermore, it is associated with risks such as death, heart attack, and stroke. Thus, this study introduces a neuro-fuzzy-based method which can help the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2022
ISSN: ['0924-669X', '1573-7497']
DOI: https://doi.org/10.1007/s10489-022-04276-8